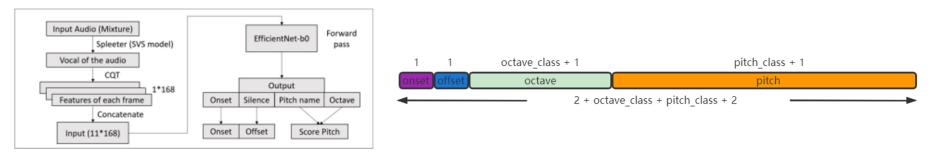


Multi-modal Music Transcription System

Automatic Melody Transcrption

AMT Assignment: Original Model Output

· ONE Nerual Network, ONE OutTensor to predict 4 targets



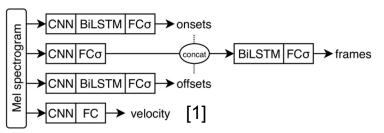
 $loss = onset_loss + offset_loss + octave_loss + pitch_loss \quad (weight?) \\ loss = k_1 * onset_loss + k_2 * offset_loss + k_3 * octave_loss + k_4 * pitch_loss$

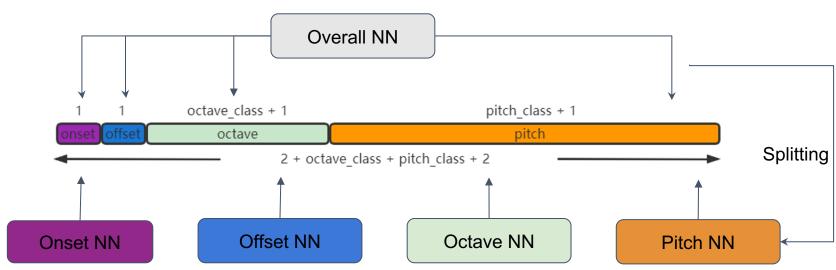
- Hard to judge the best factor (ki) of 4 different target
- Hard for model to predict 4 target best at same time

[1] J. -Y. Wang and J. -S. R. Jang, "On the Preparation and Validation of a Large-Scale Dataset of Singing Transcription," ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

Improvement: Model Splitting

IDEA: split different model to predict different metrics





[1] Github: BShakhovsky/PolyphonicPianoTranscription: Recurrent Neural Network for generating piano MIDI-files from audio (MP3, WAV, etc.) (github.com)

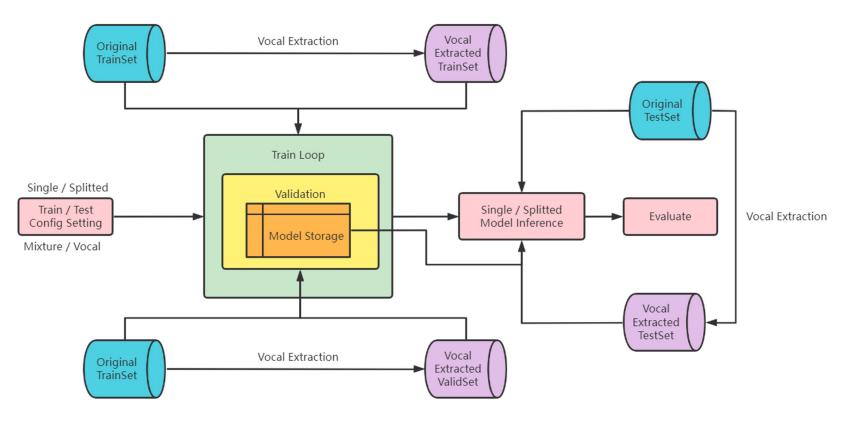
© Copyright National University of Singapore. All Rights Reserved.

Some improvement tricks

- MIR-ST500 Dataset: only take annotation for vocal part?
 Use extract tool (E.G. demucs) to extract vocal part!
- Large-scale dataset, quick optimize and get worse soon?
 May skip some well-performed training model during epoch
 - Valid and save model after training certain amount of data!
 - For splitted model, save best individually and combine!

```
python inference.py --save_model_dir ./models7_vocal
    --best_model_id_onset 59 --best_model_id_offset 70
    --best_model_id_octave 19 --best_model_id_pitch 34
```

Melody System Implementation



Metrics Performance (TestSet)

EffNetb0 F1-Score MIR-ST500

ConPOff	0.4578
COnP	0.6663 ↓
COn	0.7544 ⊥

	Metric	Precision	Recall	F1-Score
Single Model	ConPOff	0.334695	0.409107	0.366952
Mixture Audio MIR-ST500	COnP	0.569715	0.703664	0.627377
	COn	0.635402	0.784728	0.699628
	Metric	Precision	Recall	F1-Score
Splitted Model	Metric ConPOff	Precision 0.357746 ↑	0.405023	F1-Score 0.378657

Single Model	Metric	Precision	Recall	F1-Score
	ConPOff	0.402688	0.403332	0.402210
Vocal Audio MIR-ST500	COnP	0.693781	0.703302	0.697048 ↑
MIIX-01300	COn	0.762988	0.772290	0.765943 ↑
	Metric	Precision	Recall	F1-Score
Splitted Model	ConPOff	0.402671	0.423197	0.411709 ↑
Vocal Audio MIR-ST500	COnP	0.674778	0.718016	0.694057 ↑
MIR-S1500				

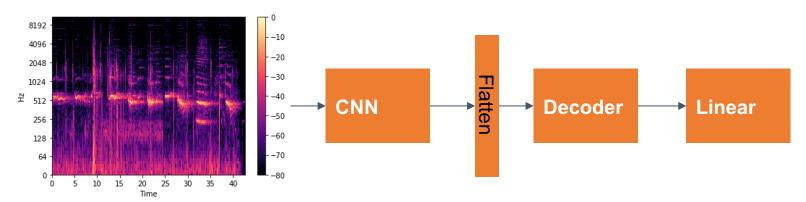
- · Comparison Between Model Combination: Better Precision (6%) (Mixture), obvious improvement when using mixture
- · Comparison Between Audio Input: Significant improvement on COnP, COnPOff with vocal, better than EffNetb0
- Splitted Model+Vocal Audio Structure: Perform best F1-Score of COnPOff (0.4117, 12.2% higher than baseline)!

 [1] J. -Y. Wang and J. -S. R. Jang, "On the Preparation and Validation of a Large-Scale Dataset of Singing Transcription," ICASSP 2021 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

Automatic Lyric Transcrption

ASR: Mel-Spectrogram Based

- Mel-Spectrogram + CRDNN(CNN, RNN, DNN)
 Spectrogram (raw feature) + CNN (feature extractor) + RNN (decoder) + DNN (linear)
- Mel-Spectrogram + CNN + Transformer
 Spectrogram (raw feature) + CNN (feature extractor) + Transformer (decoder) + DNN (linear)

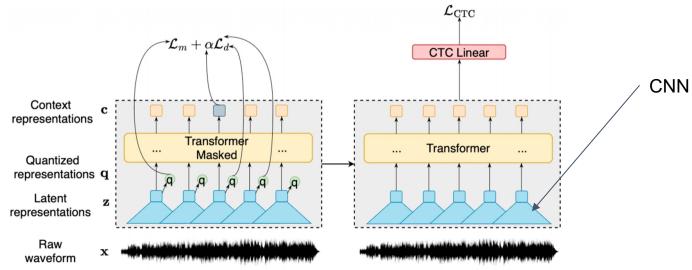


ASR: End-to-End Wac2Vec 2.0

Training wav2vec 2.0 has two stages:

Stage I: Self-supervised Contrastive Learning

Stage II: Supervised Fine-tuning

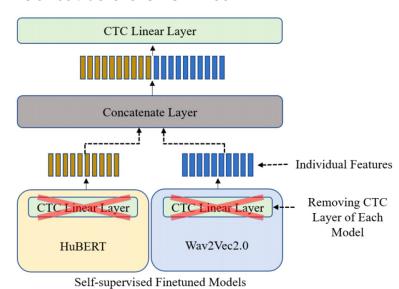


[1] Gu X, Ou L, Ong D, Wang Y. TRANSFER LEARNING OF WAV2VEC 2.0 FOR AUTOMATIC LYRIC TRANSCRIPTION[C]//Proceedings of the 30th ACM International Conference on Multimedia. 2022.

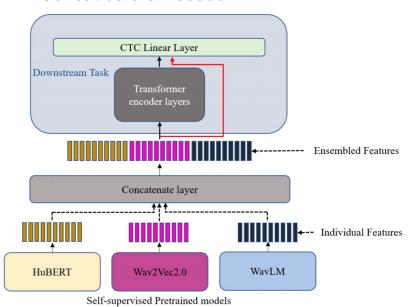
Ensemble Methods on ASR

Model Ensemble

Concat before CTC Linear

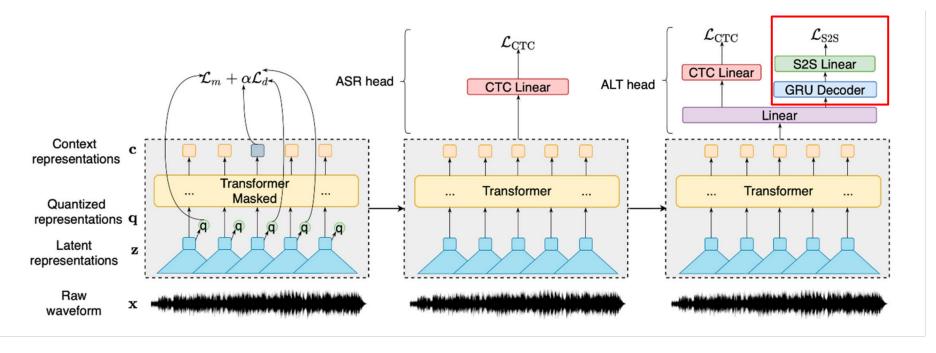


2. Feature Ensemble Concat before Decoder



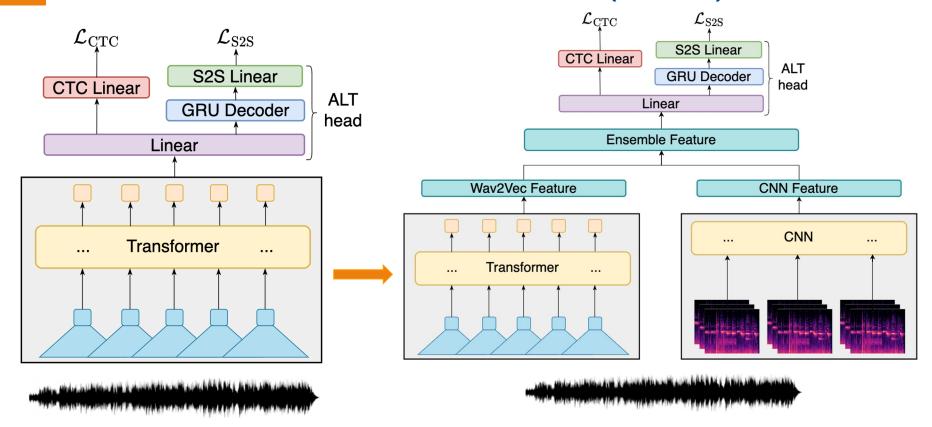
[1] A Arunkumar, Vrunda N Sukhadia, S. Umesh Investigation of Ensemble features of Self-Supervised Pretrained Models for Automatic Speech Recognition[C] International Speech Communication Association

Transfer Learning to ALT



[1] Gu X, Ou L, Ong D, Wang Y. TRANSFER LEARNING OF WAV2VEC 2.0 FOR AUTOMATIC LYRIC TRANSCRIPTION[C]//Proceedings of the 30th ACM International Conference on Multimedia. 2022.

Ensemble Features on ALT(Ours)

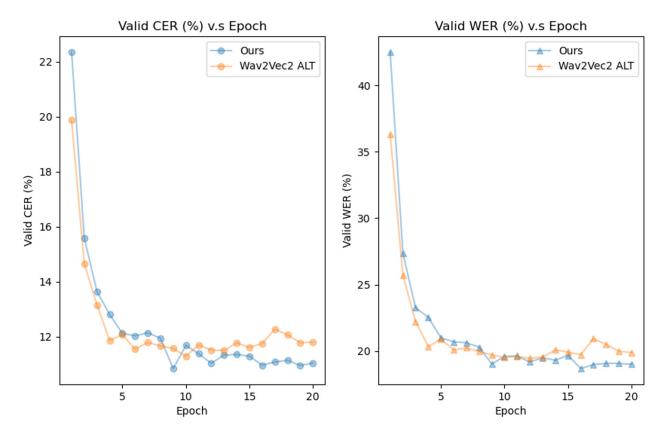


Performance

Metric Model	Language Model	CER (%)	WER (%)	SER (%)
Wav2vec2+ALT head	RNNLM trained on DSing1	12.28	21.66	64.38
Wav2Vec 2.0 + CNN +ALT Head(Ours)		10.66	19.29	61.06
Error Rate Decrease By		13.2%	10.9%	5.2%
Wav2vec2+ALT head		11.35	17.75	50.83
Wav2Vec 2.0 + CNN +ALT Head(Ours)	RNNLM trained on DSing30 (10 times larger than Dsing1)	10.83	17.30	49.58
Error Rate Decrease By	man Danig r)	4.5%	2.5%	2.5%

[©] Copyright National University of Singapore. All Rights Reserved.

Performance



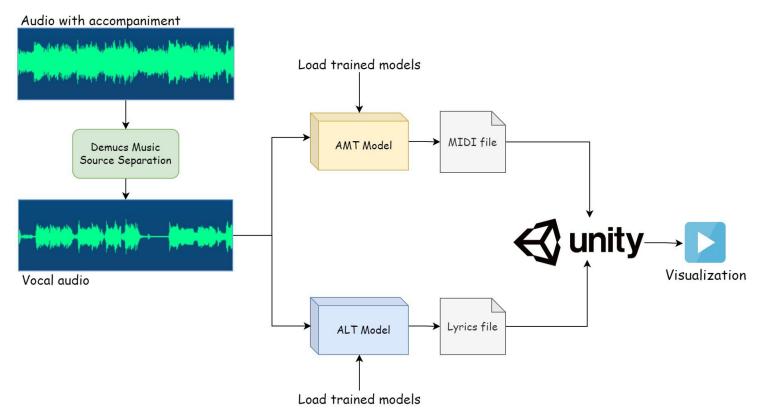
Model Parameters

ALT Model	Model Parameters
Wav2Vec 2.0	316.5M
ALT Head	89.4M
Wav2Vec 2.0 + ALT Head(Current SOTA)	405.9 M
Wav2Vec 2.0 + CNN + ALT Head(Ours)	408.7 M
Model Increase By	0.5% (2.8M)

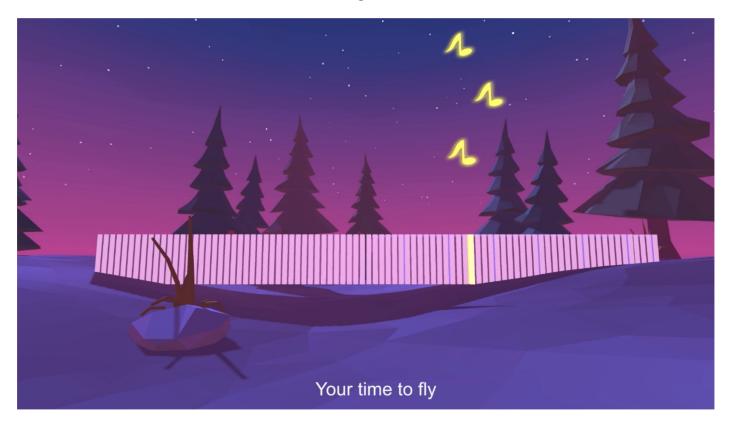
Our model improves the performance with only a slight increase of parameters!

Visuialization

System Workflow



Visualize pitch and lyrics



Visualize pitch and lyrics

Melody

- 88 keys
- Input: 2d array
- [[start, end, pitch],...[start, end, pitch]]
- generate a note when time to start

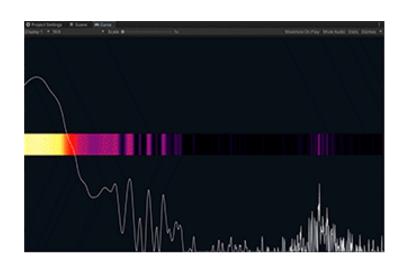
Lyrics

- Input: 2d array
- [[start, end,lyrics],...[start, end,lyrics]]

Audio Active visual

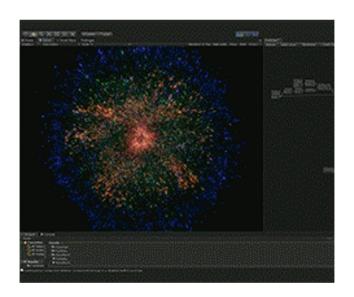
sphere scaled by the audio level

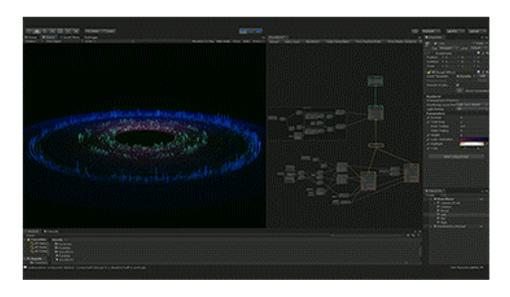
draw **frequency**band levels with raw
wave function



get the audio **frequency spectrum** of an input stream

Audio Active visual





Customize particle system provided by Visual Effact Graphics in Unity

Demonstration

THANK YOU